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Abstract

Pools of overlapping peptides corresponding to specific antigens are frequently used to identify T cell immune responses to

vaccines or pathogens. While the response to the entire pool of peptides provides important information, it is often desirable to

also know to which individual peptides within the pool the immune responses are directed. In this report, we analyzed various

ways of deconvoluting an immune response to a pool of peptides to determine the number of different peptides to which the T

cells are responding. We used a Monte Carlo simulation to optimize the construction of peptide pools that could identify

responses to individual peptides using the fewest numbers of assays and patient material. We find that the number of assays

required to deconvolute a pool increases by the logarithm of the number of peptides within the pool; however, the optimum

configuration of pools changes dramatically according to the number of responses to individual peptides that are expected to be

in the sample. Our simulation will help in the design of clinical trials in which the breadth of the response is being measured, by

allowing a calculation for the minimum amount of blood that needs to be collected. In addition, our results guide the design and

implementation of the experiments to deconvolute the responses to individual peptide epitopes.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, there have been great advances in the

ability to detect and characterize antigen-specific T

cells. Small overlapping peptides that span an entire

protein(s) of interest are being routinely used to

determine the number of antigen-reactive T cells

within clinical samples by intracellular flow cytom-

etry or ELISpot (Kern et al., 1998, 1999, 2002; Addo

et al., 2001; Altfeld et al., 2001; Betts et al., 2001;

Maecker et al., 2001; Yu et al., 2002). Typically, such

pools contain peptides that are between 9 and 20

amino acids in length, and overlap to a degree that

ensures that every T cell epitope is represented. We

have adopted the approach of using peptides that are

15 amino acids long, and overlap by 11 (i.e., starting

every 4th amino acid through a protein) (Betts et al.,

2001; Maecker et al., 2001). For protein such as HIV

gag, which is approximately 500 amino acids long,

this translates into a set of 120–125 peptides (depend-

ing on the strain of HIV from which the gag was

derived).

As an alternative, some investigators have used

pools of peptides that represent predicted or known

HLA class-I-restricted T cell epitopes (Dalod et al.,
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1999; Betts et al., 2000). However, we feel that there

are advantages to using the overlapping peptides

approach: (1) the HLA type of the patient, and the

corresponding dominant epitopes relevant to the

patient’s haplotype, do not need to be determined in

advance; and (2) both CD4+ and CD8+ T cell

responses can be assessed (Betts et al., 2001; Maecker

et al., 2001). Irrespective of these considerations, the

methods described here are relevant to deconvoluting

peptide responses from pools of overlapping peptides

or optimized class I epitopes.

Enumeration of T cell responses to peptide pools

by flow cytometric assays usually requires between

0.5 and 1 million cells; ELISpot assays use a few

hundred thousand (but are usually done in duplicate or

triplicate). Further testing of every individual peptide

within a pool to determine to which peptides the T

cells are responding would be prohibitive, from both a

sample requirement and a reagent requirement. For

example, for the HIV gag, one would have to perform

120 separate assays, requiring at least 50 ml of blood

and 120 tests. Instead, peptides may be pooled

together in sets to determine responses. This has

previously been accomplished by creating multiple

smaller pools in a ‘‘matrix’’ format, and has been

relatively successful for determining individual pep-

tide responses for pools of 100–120 peptides (Kern et

al., 1999; Betts et al., 2000).

However, there is a need to deconvolute responses

from larger pools of peptides. As an example, we are

currently planning a clinical trial where we will

immunize with DNA vectors that express the HIV

envelope protein from each of three clades as well as

an HIV gag–pol–nef polyprotein. The combined

immunogen expresses four proteins, and the total

number of peptides we will use to determine immu-

nogenicity is approximately 800. For some of the

vaccinees we will wish to determine the breadth of

the response. However, the composition of the

‘‘matrix’’ pools of peptides that would best accom-

plish this is not self-evident.

Therefore, we wrote a program to model the

determination of peptide responses. The software does

a complete test of all possible peptide pool config-

urations against a varying number of potential positive

responses from within the immunogen. We were able

to determine the optimal configuration of peptide

pools for deconvoluting peptide responses, with the

goal of minimizing the number of assays and the

amount of clinical sample required. Here, we show

this optimization for either 120 or 800 peptide libra-

ries; additional results for 64, 480, or 1200 peptide

pool libraries are available. The software can also be

used to output the optimal peptide pool configuration,

and, given the results of a series of assays, can identify

which peptides from those pools comprise the

response.

2. Materials and methods

The software used in this analysis, ‘‘Deconvolute-

This’’ version 1.0, was written in C++ using the

Metrowerks Codewarrior Pro for Macintosh frame-

work. The application and source code are available

from the author by request. The software is imple-

mented for Mac OSX, but may be run on earlier

versions of the operating system. The software is

capable of both simulating a series of deconvolutions

to identify the optimal peptide configuration, as well

as aiding in such an experiment by outputting the

peptide pool configuration and reading in a set of

positive responses to identify which peptides must be

re-tested in a second round of assays.

3. Results and discussion

The simplest way to deconvolute the individual

responses within a peptide pool is to simply test each

of the peptides from the pool separately. From a pool

of 100 peptides, however, this would require 100

assays to find the few that are responding: this is

highly inefficient. For the purpose of explaining how

we approached this problem, we will consider a

peptide pool comprising 100 distinct peptides. Typi-

cally, the number of peptides that will generate a

response from such a pool will be less than six.

A more efficient process is to break the large pool

into a number of smaller pools. For example, 10 pools

of 10 peptides each could be tested. If there were only

one positive peptide, only one of those pools would be

positive—then, each of those 10 peptides could be

individually tested. Thus, a total of 20 assays is

performed in two rounds to identify the peptide (i.e.,

deconvolute the response). However, if there are three
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peptides that are positive, this approach will likely

require a total of 20–40 tests: 10 pools of 10,

followed by testing one to three positive pools indi-

vidually, depending upon whether the responding

peptides fall into one, two, or three pools.

One way to improve the efficiency is to implement

additional pools of peptides that contain different

mixtures of peptides. For example, the standard

matrix approach would use 20 pools of 10 peptides,

where each peptide is contained within two different

pools (Fig. 1). Now a single peptide response can be

determined with 20 assays, and a three-peptide

response can be determined with 29 or fewer assays.

We use the term ‘‘coverage’’ to mean the number of

times each peptide is represented within the pools. In

this case, the coverage is 2; in the previous example,

the coverage is 1.

Fig. 1 shows an extension, to this process, where

the coverage is now 3 (i.e., each peptide is represented

in three different pools). In addition, the pool size was

increased from 10 to 20 peptides; this reduces the

number of pools that need to be tested in the first

round. It appears from this example that 15 pools of

20 peptides each (coverage = 3) may be more efficient

for determining peptide responses than 20 pools of 10

peptides (coverage = 2), which had been our standard

method for deconvoluting responses.

In considering our upcoming requirement to de-

convolute from 800 peptides, we realized that it would

be impossible to guess at the optimal peptide pool

construction. Therefore, we used a software program

to analyze pool configuration and potential responses,

testing all possible combinations, to determine the

optimal configuration.

There were three variables that were modeled in

the software, once the total number of peptides were

entered: (1) The size of each peptide pool used in the

first round of assays; (2) The coverage; and (3) The

number of positive peptides in a simulated response.

The total number of pools is determined by the first

two variables. For each unique configuration of pools

(from variables #1 and #2), we ran 25,000 simulations

generating a random set of positive peptides (defined

by variable #3). For each simulation, the number of

second-round assays required to finish the deconvo-

lution was determined. The optimal pool configura-

tion was defined as that which required the minimum

total number of assays (round one plus round two).

The results of some of these simulations are shown in

Table 1.

The first conclusion from these simulations is that

the optimal peptide configuration depends on the

expected number of positive peptides in the pool.

For example, the optimal configuration to detect one

peptide from 800 is to use 20 pools of 160 peptides.

With this configuration, on average only 26 tests

(maximum of 41) need to be performed to identify

the peptide uniquely. However, if there are 5 positive

peptides in the pool, this particular configuration is

highly inefficient, requiring on average 188 assays.

Contrast this with the optimal configuration designed

with the expectation of five positive peptides (48

pools of 100 peptides), in which the deconvolution

will require only 62 assays. On the other hand,

deconvoluting a single peptide with that configuration

requires 50 assays.

In experimental situations, of course, one cannot

know in advance how many peptides will be positive

for any given sample. Therefore, the goal is to choose

a peptide configuration that is likely to minimize the

number of assays for the average sample.

For all configurations of pools, the number of

assays required to deconvolute increases by the cube

of the number of peptides that are positive. Further-

more, the number of extra assays required when the

number of positive peptides is less than that for which

the configuration was optimized is relatively smaller.

Therefore, one should in general choose a configu-

ration that is optimized for the upper end of the range

of expected positive peptides. For example, if the

expected number of positive responses within a pool

of 800 peptides is, on average, 6, then one would

probably choose to use 64 pools of 50 peptides

(coverage = 4), the optimum for nine positive res-

ponses. Using this configuration, the number of

assays required for deconvolution will be, on average,

between 64 (one positive peptide) and 110 (10 pos-

itive peptides).

We considered other possible methods to increase

the efficiency. For example, if there are 10 positive

peptides (out of 800), and the above configuration is

tested, after the first round of assays we would have to

test 46 peptides to determine which ones are the

positive ones. One could consider making another

matrix of these 46 (for example, 14 pools of 6 or 7, in

a 7� 7 matrix) as an intermediate step. However, it is
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impossible to construct a configuration of peptide

pools (out of 46) that will identify the 10 positives

in less than 46 assays (the number required to test

each individually). When the fraction of peptides that

are positive is significantly greater than a few percent

of the total peptide pool, then the most efficient

deconvolution is to test them individually.

It must also be remembered that the creation of

these peptide pools is not only labor-intensive, but

also reagent-intensive. The smallest pools that can be

made will have enough peptides for testing hundreds

of samples (because of pipetting limitations). There-

fore, it will be unlikely that a laboratory would

construct different configurations of peptide pools

for deconvolution purposes. Hence, the pools for the

first round will always be the same, and the optimal

configuration will need to be determined in advance.

In deconvoluting by the matrix approach, it can be

helpful to consider the absolute value of the positive

response. In other words, a positive response is not

just a ‘‘yes’’ or ‘‘no’’, but is quantitative in nature.

Consider a two-peptide response in a matrix approach

such as that shown in Fig. 1. If one of the peptides

gave a response of 1% of CD8 T cells, and the other

gave a response of 0.1% of CD8 T cells, then there

would be no ambiguity: the two pools containing the

first peptide would show 1% and the two pools

containing the second peptide would show 0.1% as

well. The peptide at the intersection of one of the first

pools with one of the second pools could be elimi-

nated since the pool values are different. However,

this additional information can only help with a very

limited number of positive responses, and only if the

responses are sufficiently different in magnitude that

they can be distinguished with a high degree of

confidence.

In our clinical trials, we are immunizing with four

different immunogens: Clades A, B, and C envelope,

and a gag–pol–nef polyprotein. For routine analysis,

we will test immunogenicity with seven peptide pools:

one for each envelope, one for gag, two for pol, and

one for nef. These pools are designed to give us

biologically relevant information about the immune

response generated in our vaccines. Therefore, when

we are preparing to deconvolute, we would know

which of these seven pools need to be interrogated for

individual responses.

Might we not achieve additional efficiency by

testing matrix pools for only those proteins in which

there is a response? The answer is a resounding

no. Constructing individual configurations means that

we would have seven different sets of pools. How-

ever, we can construct a single pool set for all seven

immunogens. In our simulations, we find that the

number of assays required to deconvolute responses

increases by the logarithm of the number of total

peptides; specifically, a 10� increase in the number

of peptides only requires 1.6� increase in the number

Fig. 1. Construction of peptide pool ‘‘matrices’’ for deconvolution of peptide responses. For this example, we consider how to identify which of

100 peptides contribute to an immune response. (A) For display purposes, consider the 100 peptides arranged in a 10� 10 array. In the standard

matrix approach, 20 peptide pools are made of different mixtures of peptides. For example, Pool #1 has peptides 1, 11, 21, . . .91. Pool #11 has

peptides 1, 2, 3, . . .10. Note that each peptide is represented in two pools, and no two peptides share membership in more than one pool. (B–J)

These panels illustrate the approach to identifying peptide responses using three different ways of constructing pools. The left three panels using

20 pools of 10 peptides (standard matrix approach). The middle panel illustrates 10 pools of 20 peptides. In both of these approaches, each

peptide is in two different pools. The right panel illustrates 15 pools of 20 peptides. In addition to the 10 pools shown in the middle panels, an

additional five pools (color coded) are constructed to minimize the shared membership of groups of peptides. Each row of Panels illustrates the

process of identifying a single (peptide #23), double (peptides #23 and 47), and triple (peptides #23, 57, and 68) response. Blue dots indicate the

true positive peptides; red dots illustrate the peptides that are potential positives after the first round—both blue and red peptides must be

retested in the second round to identify the true responders. (B) A single response causes pools 3 and 13 to be positive. There is only one

possible peptide that belongs to these two pools, so no further assays are necessary. Deconvolution required only the 20 original pools. (C) A

single peptide caused pools 2 and 7 to be positive. There are four peptides belonging to these two pools; hence, a second round testing each of

these four peptides is necessary to identify which one was positive. 10 assays were performed in the first round, and four in the second, for a

total of 14 assays. (D) A single peptide caused pools 2, 7, and 12 to become positive. Only one peptide belongs to all three pools; hence a second

round was not necessary. Deconvolution required 15 assays. (E) Two positive responses cause four pools to become positive. After the first

round, it is known that the four pools are positive, but it is not know whether the positive response is from two, three, or four of the peptides that

lay at the intersections. Hence, four additional assays are necessary to fully deconvolute this response. (F–J) Similar analyses are carried out to

illustrate, given the positive peptides which other peptides must be tested. Note that the optimal configuration of peptide pools (as defined by the

minimum total number assays) is 10 pools of 20 when there is one positive peptide, and 15 pools of 20 for two or three positive peptides—20

pools of 10 peptides is never the optimum.
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of tests (i.e., blood volume required is proportional to

1.6�Log(#peptides)).

Thus, consider a subject who had peptide responses

originating from four of the seven pools. For deconvo-

lution, we would need to test configurations for each of

the four pools, requiring 4� the amount of blood

required to deconvolute just one pool. On the other

hand, deconvoluting all peptides simultaneously will

Table 1

Optimal configurations for deconvoluting peptides and number of assays required

Conf Size Cov Pools NPos MxPos Number of positive peptides in the sample

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40

800 peptides

1 160 4 20 5.2 21 26 40 72 123 188 261 337 408 474 531 717 787 810 817 820

2 160 5 25 8.29 32 27 34 52 87 139 204 276 348 419 484 699 783 812 821 825

3 100 4 32 11.6 35 34 37 44 58 80 109 144 184 226 271 486 640 730 779 820

4 100 5 40 12.3 36 42 43 46 53 65 84 110 141 177 219 434 607 714 774 824

5 100 6 48 13.9 46 50 51 52 56 62 74 92 116 145 181 390 575 700 771 829

6 80 5 50 21.4 66 50 53 54 57 63 72 85 102 123 148 309 476 611 704 799

7 80 6 60 20.6 67 60 63 64 65 68 73 81 92 107 126 267 436 582 687 799

8 50 4 64 25.6 55 64 67 68 70 73 77 83 90 99 110 188 293 402 504 662

9 50 4 64 34.7 80 64 67 68 70 73 77 83 90 99 110 188 293 403 504 661

10 50 5 80 25.6 62 80 83 84 85 86 88 91 95 100 106 161 249 354 459 635

15 32 4 100 44 85 102 103 104 105 106 108 109 112 115 118 145 188 246 312 452

20 32 5 125 55.4 112 127 128 129 130 131 132 133 134 136 138 153 181 224 281 413

25 20 3 120 95.5 165 122 123 124 125 126 128 130 132 134 137 156 182 216 255 344

30 20 4 160 83 150 162 163 164 165 166 167 168 169 170 172 181 196 216 243 314

40 16 4 200 103 183 202 203 204 205 206 207 208 209 210 211 218 228 241 258 303

120 peptides

1 24 2 10 4.89 7 15 26 40 53 66 77 87 96 102 108 124 129 130 130 130

2 24 3 15 5.98 12 17 21 30 41 53 66 77 87 96 104 126 133 135 135 135

3 20 3 18 9.95 23 20 23 28 36 46 56 66 75 84 92 120 132 136 138 138

4 15 3 24 10.1 23 26 27 30 35 40 47 54 61 69 76 107 126 136 141 144

5 15 3 24 15.7 35 26 27 30 35 40 47 54 61 69 76 107 126 136 141 144

6 12 3 30 14.8 32 32 33 35 37 41 45 50 56 61 67 96 118 133 141 148

7 12 3 30 19.6 43 32 33 35 37 41 45 50 55 61 67 96 118 133 141 148

8 8 2 30 24.5 49 32 34 36 39 43 47 51 55 59 64 85 104 119 130 142

9 8 2 30 28.9 53 32 34 36 39 43 47 51 55 59 64 85 104 119 130 142

10 8 2 30 33.3 61 32 34 36 39 43 47 51 55 59 64 85 104 119 130 142

15 3 1 40 39.9 45 43 46 49 52 55 58 60 63 66 68 80 91 101 110 125

20 3 1 40 50.9 60 43 46 49 52 55 58 60 63 66 68 80 91 101 110 125

25 3 1 40 60.9 75 43 46 49 52 55 58 60 63 66 68 80 91 101 110 125

30 3 1 40 69.8 87 43 46 49 52 55 58 60 63 66 68 80 91 101 110 125

40 1 1 120 40 40 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

Conf =Number of positive peptides for which a configuration has been optimized (i.e., blue dots in Fig. 1). Size =Number of peptides in each

pool. Cov =Coverage, the number of times a peptide is represented amongst the pools. Pools = total number of pools. Note that

Conf�Cov = Size� Pools. NPos =Average number of peptides that would need to be tested in a second round of assays (i.e., blue plus red dots

as shown in Fig. 1). MxPos =Maximum number of peptides that would need to be tested in a second round of assays in a worst case scenario.

The right-hand columns show the actual average number of assays that would need to be performed if there were a given number of positive

peptides, for each configuration. Since each configuration has been optimized for the number of peptides given in the first column, the assays

are minimal for that number of peptides. All values were calculated by running a Monte Carlo simulation with 25,000 runs for each

configuration. Configurations were calculated for a total of 800 peptides (top) or 120 peptides (bottom) that need deconvolution.

The left panels identify the optimum configuration of peptide pools given an expected number of positive peptides in those pools. Thus, the

optimal configuration of pools to identify two peptides from 800 is 25 pools of 160 peptides. This configuration results in the minimum total

number of assays (on average, 34) when there are two peptides that are positive, but requires 139 assays if there are five peptides. On the other

hand, choosing the optimum configuration for five peptides (48 pools of 100 peptides) would require only 52 assays, on average, to deconvolute

five responses from a total of 800.
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only require about 1.4� ( = 1.6�Log(7)) the amount

of blood.

There are several important considerations in

applying this theoretical approach to the experimental

situation. First is the issue of false positives. A false

positive for any given pool will dramatically increase

the number of potential peptides that must be tested.

As noted above, the number of assays that must be

performed increases by the cube of the number of

positives (including false positives). Hence, false

positives can have a huge impact on the ability to

deconvolute. False positives may result from the

combination of sub-optimal responses from multiple

peptides within a pool that combine to give a positive

response to that pool. For instance, one can imagine a

situation where two peptides, each giving a 0.07%

response, are present within one pool, thereby result-

ing in a positive response for that pool (0.14%), but

where other pools that contain the peptides individu-

ally will not score as positive (assuming a minimum

sensitivity of 0.1% of CD8+ T cells). Under this

scenario, one must assume that there may be difficul-

ties in deconvoluting very low level responses.

False negatives can also impact, although much

less so than false positives. There is a minimum

sensitivity of the assay (for example, 0.1% of CD8,

depending on the validation data of a given labora-

tory). If a single peptide response is close to this

threshold, then it might have come up positive in the

first (pools) round, but negative when individual

peptides are tested. Indeed, when the number of

peptides in the second round does not fully account

for the positives in the first round, it is impossible to

know if that was because of false positives in the first

round or false negatives in the second round.

Given the need to deconvolute positive responses

from a pool of 800 peptides, how much blood will we

need to collect from each subject? We estimate that

we will have approximately 10 positive responses

from the typical subject (in both CD4 and CD8 T

cells). Thus, we will probably select a configuration

of pools optimized for 15 positive peptides: 100 pools

of 32 peptides (coverage = 4). Thus, the first round of

assays will always be 100 pools. For this configu-

ration, the second round of assays will be less than 10

for most subjects with 1–7 positive responses, and

under 20 for those with 8–10 responses. For subjects

with 20 positive responses, the second round will

require, on average 88 more assays. The first 100

pools will give us data on both CD4 and CD8 T cells,

but since the positive peptides will be different for

each subset, the second round must include different

sets of peptides. Thus, the average subject (with less

than 10 positive peptides) will require a total of 140

assays. Our FACS assays use 0.5 to 1 million cells

each, meaning that we will need at least 140 million

cells (or 140 ml of blood) for each time point that we

wish to deconvolute. If our vaccines generate espe-

cially good breadth (for example, 20 positive peptides

for CD4 or CD8), then we will need at least twice this

much blood.

The ability to deconvolute peptide responses from

a pool of overlapping peptides representing an immu-

nogen (or antigen from pathogen) is an extremely

powerful technique that will provide much informa-

tion about the biology and immunology of the system.

Our study here determined the optimal methodology

for performing such a deconvolution; perhaps the

most important conclusion is that the number of

assays required increases very slowly with the size

of the total pool of peptides. Hence, it makes sense to

interrogate as many peptides as possible simultane-

ously. Our study also helps plan clinical investigations

in terms of how much blood needs to be collected in

order to have a reasonable chance of success in fully

deconvoluting an immunologic response.
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